1. Strategies for Improving Care

Diabetes Care 2016;39(Suppl. 1):S6–S12 | DOI: 10.2337/dc16-S004

Recommendations

- A patient-centered communication style that incorporates patient preferences, assesses literacy and numeracy, and addresses cultural barriers to care should be used. B
- Treatment decisions should be timely and based on evidence-based guidelines that are tailored to individual patient preferences, prognoses, and comorbidities. B
- Care should be aligned with components of the Chronic Care Model to ensure productive interactions between a prepared proactive practice team and an informed activated patient. A
- When feasible, care systems should support team-based care, community involvement, patient registries, and decision support tools to meet patient needs. B

DIABETES CARE CONCEPTS

In the following sections, different components of the clinical management of patients with (or at risk for) diabetes are reviewed. Clinical practice guidelines are key to improving population health; however, for optimal outcomes, diabetes care must be individualized for each patient. The American Diabetes Association highlights the following three themes that clinicians, policymakers, and advocates should keep in mind:

1. Patient-Centeredness: Practice recommendations, whether based on evidence or expert opinion, are intended to guide an overall approach to care. The science and art of medicine come together when the clinician is faced with making treatment recommendations for a patient who would not have met eligibility criteria for the studies on which guidelines were based. Recognizing that one size does not fit all, these Standards provide guidance for when and how to adapt recommendations. Because patients with diabetes have greatly increased risk for cardiovascular disease, a patient-centered approach should include a comprehensive plan to reduce cardiovascular risk by addressing blood pressure and lipid control, smoking prevention and cessation, weight management, physical activity, and healthy lifestyle choices.

2. Diabetes Across the Life Span: An increasing proportion of patients with type 1 diabetes are adults. For less salutary reasons, the incidence of type 2 diabetes is increasing in children and young adults. Patients with type 1 diabetes and those with type 2 diabetes are living well into older age, a stage of life for which there is little evidence from clinical trials to guide therapy. All these demographic changes highlight another challenge to high-quality diabetes care, which is the need to improve coordination between clinical teams as patients transition through different stages of the life span.

3. Advocacy for Patients With Diabetes: Advocacy can be defined as active support and engagement to advance a cause or policy. Advocacy is needed to improve the lives of patients with (or at risk for) diabetes. Given the tremendous toll that obesity, physical inactivity, and smoking have on the health of patients with diabetes, efforts are needed to address and change the societal determinants at the root of these problems. Within the narrower domain of clinical practice guidelines, the application of evidence level grading to practice recommendations can help to identify areas that require more research (1). Refer to Section 14 “Diabetes Advocacy.”

© 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
CARE DELIVERY SYSTEMS

There has been steady improvement in the proportion of patients with diabetes treated with statins and achieving recommended levels of A1C, blood pressure, and LDL cholesterol in the last 10 years (2). The mean A1C nationally has declined from 7.6% (60 mmol/mol) in 1999–2002 to 7.2% (55 mmol/mol) in 2007–2010 based on the National Health and Nutrition Examination Survey (NHANES), with younger adults less likely to meet treatment targets compared with older adults (2). This has been accompanied by improvements in cardiovascular outcomes and has led to substantial reductions in end-stage microvascular complications.

Nevertheless, 33–49% of patients still do not meet targets for glycemic, blood pressure, or cholesterol control, and only 14% meet targets for all three measures and nonsmoking status (2). Evidence also suggests that progress in cardiovascular risk factor control (particularly tobacco use) may be slowing (2,3). Certain patient groups, such as young adults and patients with complex comorbidities, financial or other social hardships, and/or limited English proficiency, may present particular challenges to goal-based care (4–6). Even after adjusting for patient factors, the persistent variation in quality of diabetes care across providers and practice settings indicates that there is potential for substantial system-level improvements.

Chronic Care Model

Numerous interventions to improve adherence to the recommended standards have been implemented. However, a major barrier to optimal care is a delivery system that is often fragmented, lacks clinical information capabilities, duplicates services, and is poorly designed for the coordinated delivery of chronic care. The Chronic Care Model (CCM) has been shown to be an effective framework for improving the quality of diabetes care (7).

Six Core Elements

The CCM includes six core elements for the provision of optimal care of patients with chronic disease:

1. Delivery system design (moving from a reactive to a proactive care delivery system where planned visits are coordinated through a team-based approach)
2. Self-management support
3. Decision support (basing care on evidence-based, effective care guidelines)
4. Clinical information systems (using registries that can provide patient-specific and population-based support to the care team)
5. Community resources and policies (identifying or developing resources to support healthy lifestyles)
6. Health systems (to create a quality-oriented culture)

Redefining the roles of the health care delivery team and promoting self-management on the part of the patient are fundamental to the successful implementation of the CCM (8). Collaborative, multidisciplinary teams are best suited to provide care for people with chronic conditions such as diabetes and to facilitate patients’ self-management (9–11).

Key Objectives

The National Diabetes Education Program (NDEP) maintains an online resource (www.betterdiabetescare.nih.gov) to help health care professionals to design and implement more effective health care delivery systems for those with diabetes. Three specific objectives, with references to literature outlining practical strategies to achieve each, are as follows:

Objective 1: Optimize Provider and Team Behavior

The care team should prioritize timely and appropriate intensification of lifestyle and/or pharmacological therapy for patients who have not achieved beneficial levels of glucose, blood pressure, or lipid control (12). Strategies such as explicit goal setting with patients (13); identifying and addressing language, numeracy, or cultural barriers to care (14–17); integrating evidence-based guidelines and clinical information tools into the process of care (18–20); and incorporating care management teams including nurses, pharmacists, and other providers (21,22) have each been shown to optimize provider and team behavior and thereby catalyze reductions in A1C, blood pressure, and LDL cholesterol.

Objective 2: Support Patient Behavior Change

Successful diabetes care requires a systematic approach to supporting patients’ behavior change efforts, including

1. Healthy lifestyle choices (physical activity, healthy eating, tobacco cessation, weight management, and effective coping)
2. Disease self-management (taking and managing medications and, when clinically appropriate, self-monitoring of glucose and blood pressure)
3. Prevention of diabetes complications (self-monitoring of foot health; active participation in screening for eye, foot, and renal complications; and immunizations)

High-quality diabetes self-management education (DSME) has been shown to improve patient self-management, satisfaction, and glucose control. National DSME standards call for an integrated approach that includes clinical content and skills, behavioral strategies (goal setting, problem solving), and engagement with psychosocial concerns (23).

Objective 3: Change the Care System

An institutional priority in most successful care systems is providing high quality of care (24). Changes that have been shown to increase quality of diabetes care include basing care on evidence-based guidelines (18); expanding the role of teams to implement more intensive disease management strategies (6,21,25); redesigning the care process (26); implementing electronic health record tools (27,28); activating and educating patients (29,30); removing financial barriers and reducing patient out-of-pocket costs for diabetes education, eye exams, self-monitoring of blood glucose, and necessary medications (6); and identifying/developing/engaging community resources and public policy that support healthy lifestyles (31).

Initiatives such as the Patient-Centered Medical Home show promise for improving outcomes through coordinated primary care and offer new opportunities for team-based chronic disease care (32). Additional strategies to improve diabetes care include reimbursement structures that, in contrast to visit-based billing, reward the provision of appropriate and high-quality care (33), and incentives that accommodate personalized care goals (6,34).

Optimal diabetes management requires an organized, systematic approach
and the involvement of a coordinated team of dedicated health care professionals working in an environment where patient-centered high-quality care is a priority (6).

WHEN TREATMENT GOALS ARE NOT MET

In general, providers should seek evidence-based approaches that improve the clinical outcomes and quality of life of patients with diabetes. Recent reviews of quality improvement strategies in diabetes care (24,35,36) have not identified a particular approach that is more effective than others. However, the Translating Research Into Action for Diabetes (TRIAD) study provided objective data from large managed care systems demonstrating effective tools for specific targets (6). TRIAD found it useful to divide interventions into those that affected processes of care and intermediate outcomes.

Processes of Care

Processes of care included periodic testing of A1C, lipids, and urinary albumin; examining the retina and feet; advising on aspirin use; and smoking cessation. TRIAD results suggest that providers control these activities. Performance feedback, reminders, and structured care (e.g., guidelines, formal case management, and patient education resources) may influence providers to improve processes of care (6).

Intermediate Outcomes and Treatment Intensification

For intermediate outcomes, such as A1C, blood pressure, and lipid goals, tools that improved processes of care did not perform as well in addressing barriers to treatment intensification and adherence (6). In 35% of cases, uncontrolled A1C, blood pressure, or lipids were associated with a lack of treatment intensification, defined as a failure to either increase a drug dose or change a drug class (37). Treatment intensification was associated with improvement in A1C, hypertension, and hyperlipidemia control (38). A large multicenter study confirmed the strong association between treatment intensification and improved A1C (39).

Intermediate Outcomes and Adherence

In 23% of cases, poor adherence was associated with uncontrolled A1C, blood pressure, or lipids (40). Although there are many ways to measure adherence (40), Medicare uses percent of days covered (PDC), which is a measure of the number of pills prescribed divided by the days between first and last prescriptions. “Adequate” adherence is defined as 80% (40). This metric can be used to find and track poor adherence and help to guide system improvement efforts to overcome the barriers to adherence. Barriers to adherence may include patient factors (remembering to obtain or take medications, fears, depression, or health beliefs), medication factors (complexity, multiple daily dosing, cost, or side effects), and system factors (inadequate follow-up or support).

Improving Adherence

Simplifying a complex treatment regimen may improve adherence. Nurse-directed interventions, home aids, diabetes education, and pharmacy-derived interventions improved adherence but had a very small effect on outcomes, including metabolic control (41). Success in overcoming barriers may be achieved if the patient and provider agree on a targeted treatment for a specific barrier. For example, one study found that when depression was identified as a barrier, agreement on antidepressant treatment subsequently allowed for improvements in A1C, blood pressure, and lipid control (10). Thus, to improve adherence, systems should continually monitor and prevent or treat poor adherence by identifying barriers and implementing treatments that are barrier specific and effective.

A systematic approach to achieving intermediate outcomes involves three steps:

1. **Assess adherence.** Adherence should be addressed as the first priority. If adherence is 80% or above, then treatment intensification should be considered (e.g., up-titration). If medication up-titration is not a viable option, then consider initiating or changing to a different medication class.

2. **Explore barriers** to adherence with the patient/caregiver and find a mutually agreeable approach to overcoming the barriers.

3. **Establish a follow-up plan** that confirms the planned treatment change and assess progress in reaching the target.

TAILORING TREATMENT TO VULNERABLE POPULATIONS

Health Disparities

The causes of health disparities are complex and include societal issues such as institutional racism, discrimination, socioeconomic status, poor access to health care, and lack of health insurance. Disparities are particularly well documented for cardiovascular disease.

Ethnic/Cultural/Sex/Socioeconomic Differences

Ethnic, cultural, religious, and sex differences and socioeconomic status may affect diabetes prevalence and outcomes. Type 2 diabetes develops more frequently in women with prior gestational diabetes mellitus (42), in individuals with hypertension or dyslipidemia, and in certain racial/ethnic groups (African American, Native American, Hispanic/Latino, and Asian American) (43).

Access to Health Care

Ethnic, cultural, religious, sex, and socioeconomic differences affect health care access and complication risk in people with diabetes. Recent studies have recommended lowering the BMI cut point for testing for Asian Americans to \geq23 kg/m2 (44). Women with diabetes, compared with men with diabetes, have a 40% greater risk of incident coronary heart disease (45). Socioeconomic and ethnic inequalities exist in the provision of health care to individuals with diabetes (46). As a result, children with type 1 diabetes from racial/ethnic populations with lower socioeconomic status are at risk for poor metabolic control and poor emotional functioning (47). Significant racial differences and barriers exist in self-monitoring and outcomes (48).

Addressing Disparities

Therefore, diabetes management requires individualized, patient-centered, and culturally appropriate strategies. To overcome disparities, community health workers (49), peers (50,51), and lay leaders (52) may assist in the delivery of DSME and diabetes self-management support services (53). Strong social support leads to improved clinical outcomes, reduced psychosocial symptomatology, and adoption of healthier lifestyles (54). Structured interventions, tailored to ethnic populations that integrate culture, language, religion, and literacy skills, positively influence patient outcomes (55).
To decrease disparities, all providers and groups are encouraged to use the National Quality Forum’s National Voluntary Consensus Standards for Ambulatory Care—Measuring Healthcare Disparities (56).

Lack of Health Insurance
Not having health insurance affects the processes and outcomes of diabetes care. Individuals without insurance coverage for blood glucose monitoring supplies have a 0.5% higher A1C than those with coverage (57). The affordable care act has improved access to health care; however, many remain without coverage. In a recent study of predominantly African American or Hispanic uninsured patients with diabetes, 50–60% were hypertensive, but only 22–37% had systolic blood pressure controlled by treatments to under 130 mmHg (58).

Food Insecurity

Recommendations
- Providers should evaluate hyperglycemia and hypoglycemia in the context of food insecurity and propose solutions accordingly.
- Providers should recognize that homelessness, poor literacy, and poor numeracy often occur with food insecurity, and appropriate resources should be made available for patients with diabetes.

Food insecurity (FI) is the unreliable availability of nutritious food and the inability to consistently obtain food without resorting to socially unacceptable practices. Over 14% (or one out of every seven people in the U.S.) are food insecure. The rate is higher in some racial/ethnic minority groups including African American and Latino populations, in low-income households, and in homes headed by a single mother. FI may involve a tradeoff between purchasing nutritious food for inexpensive and more energy- and carbohydrate-dense processed foods.

In people with FI, interventions should focus on preventing diabetes and, in those with diabetes, limiting hyperglycemia and preventing hypoglycemia. The risk for type 2 diabetes is increased two-fold in those with FI. The risks of uncontrolled hyperglycemia and severe hypoglycemia are increased in those with diabetes who are also food insecure.

Providers should recognize that FI complicates diabetes management and seek local resources that can help patients and the parents of patients with diabetes to more regularly obtain nutritious food (59).

Food Insecurity and Hyperglycemia

Type 1 Diabetes. Individuals with type 1 diabetes and FI may develop hypoglycemia as a result of inadequate or erratic carbohydrate consumption following insulin administration. Long-acting insulin, as opposed to shorter-acting insulin that may peak when food is not available, may lower the risk for hypoglycemia in those with FI. Short-acting insulin analogs, preferably delivered by a pen, may be used immediately after consumption of a meal, whenever food becomes available. Unfortunately, the greater cost of insulin analogs should be weighed against their potential advantages. Caring for those with type 1 diabetes in the setting of FI may mirror “sick day” management protocols.

Type 2 Diabetes. Those with type 2 diabetes and FI can develop hypoglycemia for similar reasons after taking certain oral hypoglycemic agents. If using a sulfonylurea, glipizide is the preferred choice due to the shorter half-life. Glipizide can be taken immediately before meal consumption, thus limiting its tendency to produce hypoglycemia as compared with longer-acting sulfonylureas (e.g., glyburide).

Homelessness. Homelessness often accompanies the most severe form of FI. Therefore, providers who care for those with FI who are uninsured and homeless and individuals with poor literacy and numeracy should be well versed or have access to social workers to facilitate temporary housing for their patients as a means to prevent and control diabetes.

Additionally, homeless patients with diabetes need secure places to keep their diabetes supplies and refrigerator access to properly store their insulin.

Literacy and Numeracy Deficiencies. FI and diabetes are more common among non-English speaking individuals and those with poor literacy and numeracy skills. Therefore, it is important to consider screening for FI, proper housing, and diabetes in this population. Programs that see such patients should work to develop services in multiple languages with the specific goal of preventing diabetes and building diabetes awareness in people who cannot easily read or write in English.

Cognitive Dysfunction

Recommendations
- Intensive glucose control is not advised for the improvement of poor cognitive function in hyperglycemic individuals with type 2 diabetes.
- In individuals with poor cognitive function or severe hypoglycemia, glycemic therapy should be tailored to avoid significant hypoglycemia.
- In individuals with diabetes at high cardiovascular risk, the cardiovascular benefits of statin therapy outweigh the risk of cognitive dysfunction.
- If a second-generation antipsychotic medication is prescribed, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed.

Dementia
The most severe form of cognitive dysfunction is dementia. A recent meta-analysis of prospective observational studies in people with diabetes showed a 73% increased risk of all types of dementia, a 56% increased risk of Alzheimer dementia, and 127% increased risk of vascular dementia compared with individuals without diabetes (60). The reverse is also true: people with Alzheimer dementia are more likely to develop diabetes than people without Alzheimer dementia.

Hyperglycemia. In those with type 2 diabetes, the degree and duration of hyperglycemia are related to dementia. More rapid cognitive decline is associated with both increased A1C and longer duration of diabetes (61).
higher A1C level was associated with lower cognitive function in individuals with type 2 diabetes (62). However, the ACCORD study found no difference in cognitive outcomes between intensive and standard glycemic control, supporting the recommendation that intensive glucose control should not be advised for the improvement of cognitive function in individuals with type 2 diabetes (63).

Hypoglycemia. In type 2 diabetes, severe hypoglycemia is associated with reduced cognitive function, and those with poor cognitive function have more severe hypoglycemia. In a long-term study of older patients with type 2 diabetes, individuals with one or more recorded episode of severe hypoglycemia had a stepwise increase in risk of dementia (64). Likewise, the ACCORD trial found that as cognitive function decreased, the risk of severe hypoglycemia increased (65). Tailoring glycemic therapy may help to prevent hypoglycemia in individuals with cognitive dysfunction.

Nutrition. In one study, adherence to the Mediterranean diet correlated with improved cognitive function (66). However, a recent Cochrane review found insufficient evidence to recommend any dietary change for the prevention or treatment of cognitive dysfunction (67).

Statins. Given the controversy over a potential link between statins and dementia, it is worth noting that a Cochrane systematic review has reported that data do not support an adverse effect of statins on cognition. The U.S. Food and Drug Administration (FDA) postmarketing surveillance databases have also revealed a low reporting rate for cognitive-related adverse events, including cognitive dysfunction or dementia, with statin therapy, similar to rates seen with other commonly prescribed cardiovascular medications (68). Therefore individuals with diabetes and a high risk for cardiovascular disease should be placed on statin therapy regardless of cognitive status.

Mental Illness

Severe mental disorder that includes schizophrenia, bipolar disorder, and depression is increased 1.7-fold in people with diabetes (69). The prevalence of type 2 diabetes is two–three times higher in people with schizophrenia, bipolar disorder, and schizoaffective disorder than in the general population (70). A meta-analysis showed a significantly increased risk of incident depression (relative risk [RR] = 1.15), and, in turn, depression was associated with a significantly increased risk of diabetes (RR = 1.6) (71). Depression and psychosocial issues are discussed more extensively in Section 3 “Foundations of Care and Comprehensive Medical Evaluation.”

Medications

Diabetes medications are effective, regardless of mental health status. Treatments for depression are effective in patients with diabetes, and treating depression may improve short-term glycemic control (72). If a second-generation antipsychotic medication is prescribed, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed if significant changes are noted (73). Awareness of an individual’s medication profile, especially if an individual takes psychotropic medications, is key to effective management.

Diabetes in Patients With HIV

Recommendation

- Patients with HIV should be screened for diabetes and prediabetes with a fasting glucose level before starting antiretroviral therapy and 3 months after starting or changing it. If initial screening results are normal, checking fasting glucose each year is advised. If prediabetes is detected, continue to measure levels every 3–6 months to monitor for progression to diabetes.

Diabetes risk is increased with certain protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs). New-onset diabetes is estimated to occur in more than 5% of HIV-infected patients on PIs, whereas more than 15% may have prediabetes (74). PIs are associated with insulin resistance and may also lead to apoptosis of pancreatic β-cells. NRTIs also affect fat distribution (both lipohypertrophy and lipomatosis), which is associated with insulin resistance.

Individuals with HIV are at higher risk for developing prediabetes and diabetes on antiretroviral (ARV) therapies, so a proper screening protocol is recommended (75). In those with prediabetes, weight loss through healthy nutrition and physical activity may reduce the progression toward diabetes. Among HIV patients with diabetes, preventive health care using an approach similar to that used in patients without HIV is critical to reduce the risks of microvascular and macrovascular complications.

For patients with HIV and ARV-associated hyperglycemia, it may be appropriate to consider discontinuing the problematic ARV agents if safe and effective alternatives are available (76). Before making ARV substitutions, carefully consider the possible effect on HIV virological control and the potential adverse effects of new ARV agents. In some cases, antidiabetes agents may still be necessary.

References

70. Correll CU, Detraux J, De Lepelere J, De Hert M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015;14:119–136